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The RMS stability of viscoelastic systems, subject to parametric loads, with respect to a perturbation of the initial conditions is 
considered. These loads, as well as the external damping characteristics, are assumed to be random, steady-state, broadband 
processes. An expansion of the required displacements in a series in the eigenfunctions of the elastic system is used to solve the 
functional equations wkich describe the motion of such systems. The integro-differential equations in generalized displacements 
are solved using the method of stochastic averaging (an asymptotic method) under the asannption that the measure of the 
relaxation of the material and the mean value of the external damping are small quantities compared with unity and that the 
random fluctuations of the processes under consideration are small in the mean square. It is shown that the critical value of the 
system parameter may turn out to be least when the form of the perturbations of the initial conditions differs f~m the first form 
of the natural vibrations. © 1997 Elsevier Science Ltd. All fights reserved. 

It is often assumed, when investigating the stability of "classical" elements of elastic structures, such 
as, for example, a :rod which is hinged at the ends and is acted upon by a longitudinal force which is 
constant along its length, or a rectangular plate which is freely supported along its edges and is acted 
upon by uniformly distributed compressive loads applied at the edges in the plane of the plate, etc., 
that the form of the deflection of the element is identical to the form of the first mode of its natural 
vibrations. The treatment of a distributed system as a system with an infinite number of degrees of 
freedom is thereby replaced by an analysis of the behaviour of a far simpler model, a system with one 
degree of freedom. 

As a rule, the c(mditions for the stability of the equilibrium position of the system obtained using 
such a model are identical to the analogous condition for a distributed system. Not infrequently, a similar 
approach is extended to systems made of a material with more complex rheological properties, in parti- 
cular, viscoelastic properties. However, in certain situations, this approach may lead to conclusions which 
are qualitatively incorrect. The example treated in this paper confirms this. 

It was shown, in an analysis of the stability of the zeroth solution of a stochastic system of integro- 
differential equations [1], using the example of a viscoelastic rod, that perturbations of the initial 
conditions which differ in form from a single sinusoidal half-wave can, from the point of view of the 
stability, turn out to be more dangerous than those perturbations which have the form of a single 
sinusoidal half-wave. But the stability conditions are found using the direct Lyapunov method and are 
therefore sufficient but not necessary. The question therefore remains open as to whether the result 
which is obtained is just a consequence of the method used to solve the problem or whether the cause 
is of a more profolmd nature. In order to elucidate the cause of the difference which has been noted, 
it is necessary to find the conditions for the stability of a stochastic system which should be sufficient 
and necessary. 

Since, at the present time, there are no exact methods for solving stochastic equations with parameters 
which are broadband, steady-state processes, we shall use the method of stochastic averaging [2-8] for 
this purpose. This method is a development of the asymptotic method [9-11] for solving differential 
and integro-differential equations. 

Of the papers which deal with the problem of the stability of stochastic mechanical systems, we note 
the investigations of the stability of a viscoelastic rod supported by a hinge at the ends and which is 
acted upon by a random longitudinal force in the form of white noise [12, 13] where sufficient conditions 
for stability were obtained under very general assumptions regarding the rod material relaxation kernel 
and taking ageing into account and ignoring it. It was shown that, when there is no external damping, 
the rod turns out to be asymptotically stable in the mean square if the stability condition is satisfied 
when the initial conditions are perturbed, the form of which is identical to a single sinusoidal half-wave. 
An analysis of ela~tic, linear and non-linear systems has been given using the method of stochastic 
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averaging and Lyapunov exponents [14, 15]. The application of the method of the maximum Lyapunov 
exponent was considered in [16] when investigating elastic systems with two degrees of freedom which 
are perturbed by white noise. 

1. F O R M U L A T I O N  OF THE PROBLEM 

The motion of a viscoelastic system is described by an equation which can be represented in operator 
form as 

32u ~u 
3t2 + A ~'t  + (1 - R)Bu - Cu = 0 (1.1) 

' 7 
Ru = ~ R(t-x)u(x, 'c)dx, 0 <~ R(0)d0 ~ 1 

. o o  0 

where u(t, x) is the displacement of the system, x is a vector of the spatial coordinates, R is an integral 
operator, R( t -  x) is the relaxation kernel of the material, and A, B and C are partial differential operators 
with respect to the spatial coordinates. 

The solution of Eq. (1.1) must satisfy the corresponding initial and boundary conditions. 
The terms A~gu/~t, ilu, Cu take account of the external damping, the rigidity of the elastic system and 

the action of the load parameters, respectively. 
If ¢pi(x) are the eigenfunctions of the boundary-value problem Bop = ¢e2q~, then u can be expanded in 

a Fourier series in these functions 

u(x,t)  = ~ fi(t)q~i(x) (1.2) 
i=1 

The relations 

J (Pi~j d V  = 8i j ,  I (B%)~pjdV = o~$ij  (1.3) 
V V 

hold for the functions ~(x) where ~ is the Kronecker delta, ~ is the frequency of natural oscillations of 
the system and Vis the volume of the system. 

If the operator A takes account of external friction only, we can put 

I (A%)~pjdV=2e'Sij (1.4) 
V 

Here e* is a characteristic of the external damping. 
In certain cases, it can also be assumed that the equality 

I (c i)%av = (o2,a, ij (1.5) 
V 

is satisfied, where ~ is a dimensionless parameter which characterizes the parametric load. 
Equality (1.5) holds, for example, in the case of a rod of constant cross-section which is supported 

by hinges at the ends and is acted upon by longitudinal forces applied at its ends. The same can also 
be said about a rectangular plate which is supported by hinges along all its edges and is subject to 
uniformly distributed loads in the plane of the plate and parallel to its edges, a circular cylindrical shell 
under uniform axial compression, and so on. 

Taking account of relations (1.3)-(1.5), from Eq. (1.1) we obtain the equations for the generalized 
displacements)~ 

) /+ 2¢*~ + (1 - R)(o~f/- (o/2(xif/= 0 (1.6) 

(a dot over a symbol denotes a derivative with respect to time t). 
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2. SOLUTION OF THE STOCHASTIC I N T E G R O - D I F F E R E N T I A L  EQUATIONS 

Next, we shall a.,~ume that the external damping characteristics ~* and the parametric load charac- 
teristics ~ are uncorrelated steady processes 

e*(t) = E0 +El (t), a i = O t i o + a i l ( t )  

E 0 = (E*(t)) = const, ¢xi0 = (~i(t)) = const, o~i0 < 1 

and that the parameter edo~ is small compared with unity and the functions e~(t)/{0 and if,/1 are small 
in the mean square. 

Here and henceforth the operation of mathematical expectation is denoted by angle brackets. 
We now represent Eq. (1.6) in the form of the system 

)/=vi 
t 

Vi = -2E*~I/i - [.~2 f. + {02 i S R(t  - "C)f. (x)dx + co2iail fi 

where n 2 = to2(1 -a /o) .  
A solution of  Eqs (2.1) is sought in the form [2-9] 

(2.1) 

f i  = Ais inOi ,  ~lli =[ '~iAicosOi,  0 i =['~it + v i  (2.2) 

Making the usmd transformations in the case of  the asymptotic method, we express the derivatives 
of the functionsA and 9. Averaging the non-fluctuating terms over a period of the oscillations T = 2x /~  
and introducing the dimensionless time tl = cod, we arrive at the equations 

A~= F l ( A i , v i ) + g l l l q l  +gl2rl2, v~ = F2(Ai,vi)+g21"ql  + g22"q2 (2.3) 

Here  
F](Ai ,v i )=_EoAi  + t.t2zAi, F2(Ai,vi)=_l. t2x,  i.t2 =~/2 / (~ l~ i )  

_ 1  ~ R(y)sinf2iYdy ' x = 1 ~ R(y)cosf2iYdY 
z=: 2 0 2 0  

l 2 
glt = - 2  A i cos 20i,  gl2 = - - ~  ~i Ai sin 20i, g21 = sin 20i 

g22=-l-t2sin20i, Yll =£1, 112=°Li], Go=Eo/{01, E]=E I /{01 

A derivative with respect to the time t 1 is denoted by a prime. 
For convenience., we shall subsequently use the notation t instead of q. 
We next average the fluctuating terms, as a result of  which the random processes h i are Markov 

diffusional processes 

A~. = a, + bi~ i (2.4) 

where ~ is the equitvalent steady white noise with a mathematical expectation of zero and a correlation 
function K(x)  = 8(x), where 5(x) is the 5-function. 

We shall find the functions ai, b i in the manner suggested in [2-4]. 
After all the above algebra, we obtain 

2 t, {01 -~J cos 2 v 22(u)dv =-- ciA i 

t - - L  2 co, ;J _ .  {0, 3,.2 -=I3,W 
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Here, Kn(v), K22(v) are the correlation functions for the processes el and o~1 respectively. 
It is seen from the expressions for ai, b~i that the amplitude Ai is independent of the phase of the 

oscillations vi. It will not have any effect on the estimation of the stability, and the equation from which 
the function vi is determined can therefore be excluded from further discussion. 

Equation (2.4) can therefore be written in the form 

i 
A i - c iA  i 4- ~ iA i~ i  

Using Ito's differentiation formula (or the Fokker-Planck-Kolmogorov equation), we obtain an 
equation in the dispersion (,4 2 ) 

(A~)'= 2ci(A])+ ~2i(A~) - )~i(A]) (2.5) 

3. STABILITY OF A V I S C O E L A S T I C  SYSTEM 

We introduce the norm in the space of the functions u(x, t) 

Ilu(t)ll 2 = ~ ue(x,t)dV 
V 

We shall say that the equilibrium position of the system (u -- 0) is stable in the mean square with 
respect to a perturbation of the initial conditions if, for any A > 0 which may be as small as desired, a 
~i(A) > 0 is found such that the inequality (11 u(t) II 2) < A follows, which is satisfied at any instant of 
time t > 0, from the condition ([I u(0) II') < 6 which holds for the initial instant of time t = 0. 

The equilibrium position of the system is said to be asymptotically stable in the mean square if the 
previous condition is satisfied and, in addition, a 8 > 0 is found such that the equality lira (11 u(t) II 2) = 
0 holds when (ll u(0) II 2) < & t--,~ 

Taking account of expansion (1.2) and bearing in mind the first equality of (2.2), we obtain the 
inequality 

([lu(t)l[2) = ~ (f/2(t))~< ~ (A~(t)) 
i=l i=l 

for the dispersion (llu(t) 112). 
The dispersion Ql~(t)) turns out to be a monotonically decaying function if the condition 

)k i = 2 C  i + 6  2 < 0  

is satisfied. 
Substituting the expressions for ci and [~i 2 we finally write 

-e°-~2i ~ R(y)sinl-~l Y) o (3.1) 

This condition can be considered as the condition for the asymptotic stability in the mean square in 
the case of a system with a perturbation of the initial conditions, the form of which is identical to the 
ith mode of the natural oscillations ¢Pi(x). 

It is obvious that, in the case of a perturbation of the initial conditions of arbitrary form, the system 
will be asymptotically stable in the mean square if condition (3.1) is satisfied for any i. 

4. EXAMPLE 

Consider a rectilinear rod of constant cross-section hinged at the ends and acted upon by a longitudinal force 
F(t). In this case, Eq. (1.1) is written in the form 
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a2w+2e,  a w + E I  (l a4w F a 2 W _ o  
at 2 -~t - ~  - R )  ax-- ~ m a x  2 - 

Here ,  w is the deflection of the rod, x is a coordinate measured along the axis of the rod from one of its ends, 
E1 is the flexural rigidity of the rod and m is its mass per unit length. 

The boundary conditions whenx = 0 andx = l (l is the length of the rod) have the form w ffi ~ f d ~  2 ffi 0. The 
functions q~(x), the natural frequencies to/, the quantities tt'~, a~0 and the random function aa  are defined in this 
case by the expressions 

• i 4 9 4  E1 i 2 
%(x): ,~----sinmx,  o)2i : l--T---, IX2: 

Vl l m 

_ ( l l 0  ' a l l  ( t )  
~i0 - 7 ~ i l  = i2 

We shall assume that the kernel for the relaxation of the rod material and the correlation functions of the steady- 
state processes £1 and ct n are exponential functions and have the form 

R(t - "0.= Me -x(t-x) , KI i (z) = s2e -plzt, K22 ( '0 = (12e -~'lxl / i 4 

where M, Z, s, p, o, 't are positive constants (dimensionless quantities in the same way as t and x). 
Then 

2 -I 
_ i - - l ' l i ( i " l i  2~ 

J 
Finally, the quantity 7q (3.1) is defined by the expression 

~i = Pi + ai $2 (4.1) 

M( 1 2 -1 
-- L + l~'--~---(Xi0 / + 1 -(~2Yai0 [T 2 +4 i4 (1 -a i0 ) ]  -I Pi =-2~0 

Q. = _8 p2 + 2i4 (1 - a i o  ) 

a p p 2 + 4 i 4 ( l _ a i o )  

It was noted in [1] that, when o~l m O, a viscoelastic rod is stable in the mean square if the following condition, 
obtained as i --) ~, i:~ satisfied 

2(lel I) < ~ + M/2 (4.2) 

Assuming that ~1 :is a Ganssian process with zero mathematical expectation and variance s 2, we find that (I ~11 ) 
= ~(2/n)s, as a result of which inequality (4.2) takes the form 

s < l ~ ( e 0  + M  ) (4.3) 

For comparison, we return to inequality (3.1). Taking account of expression (4.1) for 7q, we express the variance 
s 2 from it 

s2 < $2, $2 =-Pi I Qi (4.4) 

In the case of the example in Table 1, some of the values of S 2 when ~0 ffi 0.5; ~ = 0.1; M = 0.01; Z = 0.1; 
02 ffi 0 are given in the second and third columns. 

An analysis of the data suggests that the quantity S 2 can take a minimum (critical) value when i ~e 1. This means 
that, from the point of view of the mean-square stability, modes of initial deflection of the rod which differ from 
the first mode of natural oscillations may turn out to be more dangerous. In this sense, the sufficient condition for 
mean-square stability (4.3) which is obtained when i --) ~, is confirmed by the inequality (4.4), at least for certain 
combinations of the parameters. 
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Table 1 

i S 2 × 105 when p = 0,1 S 2 × 105 when p = 0.01 [l~ × 105 

1 546 54.9 10 943 
2 528 52.9 10 438 
,,o 525 52.5 10 500 

5. S T E A D Y  P R O C E S S E S  OF T H E  W H I T E - N O I S E  T Y P E  

For comparison, we will now consider the stability of  a rod when the functions El(t ) a n d  0ql(t ) are 
steady Gaussian white noises. 

In the case of  an exponential relaxation kernel R ( t  - x )  = M e x p  [--Z(t - x)], the system of integro- 
differential equations (2.1) can be replaced, using the substitution 

Xi(t)= i Me-Z(t-~)fi(x)dx 

by the following system of first-order differential equations [ 17] 

* 2 C02Xi +(02(zilfi ~/i = - 2 e .  ql i - FZ i f,. + 

"Xi = O~l ( Mf i  - x X i  ) 

(5.1) 

Using Ito's formula, we obtain from this a closed system of differential equations in the statistical 
moments (f2), (~¥i), ~Xi), (V2/), (¥iX/), (X2/) [17] with a constant coefficient matrix. 

From an analysis of  the characteristic equation we find the condition for the asymptotic stability in 
the mean square of  the zeroth solution of Eqs (5.1). 

If the white noises are understood in Ito's sense, this condition can be written as follows: 

0.)2 2 

o; j ko, oj 

=X(2E0+X), 8 = l - ~ x i 0 - M / x  
(5.2) 

where 13 2, 13~i are the intensities of  the uncorrelated white noises [i 2 and ~l(t) .  
Inequality (5.2) holds when the conditions eo >[ l ]  and 8 > 0 are satisfied. The latter is the condition 

for asymptotic stability of a deterministic system (when E - ~ ¢x - o~0). From relation (5.2) when 
[~- = 0 in the case of  a rod we obtain 

~ < ~ 0  + l -  i2 i 4 )  

The values of the right-hand side of the inequality for the same values of the parameters e, X, M, cxl0 
2 for which the values of S were previously found are shown in the fourth column of Table 1. 

It can be seen that, as in the case of white noise, forms of perturbations of the initial conditions which 
involve a number of  half-waves greater than unity may turn out to be more dangerous. It is interesting 
that the relation between the parameter 132 and the number of half-waves can be non-monotone since 
the values of f3~ when i = 2 turned out to be smaller than when i = I and i --> oo. 

It should be noted that the replacement of white noises in Ito's sense by the white noises in the 
treatment of Stratonovich does not change the qualitative conclusions. 
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We also note that the results found using the asymptotic method only hold for small values of the 
quantities M/Z, s and o while no such constraints, apart from the constraint that M/Z < 1, are imposed 
on M~ Z, ~i and ~ j .  The constraint M~ Z < 1 is due to the boundedness of the viscosity of the system 
material. 

It is necessary to bear in mind that inertial forces resulting from shear deformations and the rotation 
of cross-sections were not taken into account in writing the equation of motion of the rod. The values 
of the quantity S 2, tbund using expression (4.3) for large values of i, are therefore approximate. Moreover, 
it should be kept in mind that, while the quantitative results are refined when account is taken of shear 
and rotational inertia, this does not change the qualitative conclusion that the critical value of the 
parameter s 2 may correspond to a sinusoidal form of the initial deformation with a number of half- 
waves greater than unity. 

This research was carried out with support from the Russian Foundation for Basic Research (94-01- 
01522). 
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